<img src="https://secure.leadforensics.com/133892.png" alt="" style="display:none;">

While most organizations understand the importance of data, far fewer have figured out how to successfully become a data-driven company. It’s enticing to focus on the “bells and whistles” of machine learning and artificial intelligence algorithms that can take raw data and create actionable insights. However, before you can take advantage of advanced analytics tools, there are other stops along the way, from operational reporting to intelligent learning.

Digital transformation is dependent on adoption. But adoption and proficiency of new technologies can be disruptive to an organization. Mapping a data journey provides awareness and understanding of where your organization is to ultimately get where you want to go, with enablement and adoption of the technology throughout. Without the clarity provided by a data journey, your organization won’t be positioned to successfully deploy the latest technology.

Learn about the four elements of an effective data journey in Inside Big Data

Topics

Discuss this post

Recommended posts

A recent industry report describes artificial intelligence (AI) as ‘a self-running engine for growth in healthcare with immense power to unleash improvements in cost, quality and access. Growth in the AI health market is expected to reach $6.6 billion by 2021— a compound annual growth rate of 40%. In just the next five years, the AI health market will grow more than 10X2.’
Did you know that the Microsoft Power BI solution was originally designed for non-technical users? The intent was to give business professionals across the board access to critical data; a privilege once reserved for only IT and data personnel.
Pricewaterhouse Coopers forecasts that Artificial Intelligence (AI) could contribute up to $15.7 trillion to the global economy by 2030, of which $6.6 trillion is likely to come from increased productivity and $9.1 trillion from consumption-side effects.
Since its 2014 launch, Microsoft Power BI has – arguably – been the preferred cloud-based SaaS data analytics and business intelligence (BI) solution for businesses worldwide because of its ability to:
Even before the COVID-19 crisis, businesses were increasingly embracing Artificial Intelligence (AI) and Advanced Analytics. The pandemic, however, introduced a new element of urgency to the need for these advanced AI and analytics-driven predictive and problem-solving technologies – to safeguard themselves and stakeholders against continual uncertainty, the economic repercussions following community lockdowns, and consumer apprehension-led business disruptions.
right-arrow share search phone phone-filled menu filter envelope envelope-filled close checkmark caret-down arrow-up arrow-right arrow-left arrow-down