<img src="https://secure.leadforensics.com/133892.png" alt="" style="display:none;">

If your business hasn't already embraced AI, you're probably hearing a lot about it. You may have some questions. How does it work, and what are the rewards it can deliver? And perhaps most importantly: What's involved in getting it up and running?

So, let's look at what the process of implementing AI is like, and how to avoid the pitfalls to make sure it brings you a valuable return on investment.

What Is AI — and What Can It Do for You?

One simple way of looking at AI, or artificial intelligence, is that it's a way of getting computers to do things that until recently we needed humans to do — at least where the subset of AI called machine learning is concerned.

Those tasks may involve things like combing through data to identify patterns (and deviations from expected patterns), predicting future events and trends, figuring out how to make good recommendations, or even learning how to read and write text and understand what's happening in a photo.

Another way to look at it is that AI is the peak of a progression of data analysis techniques that get more complex and automated as you go up the scale. In a sense, all the advanced AI or analytics tools you hear about are just natural progressions of the more basic data and analytics concepts that you're probably already familiar with.

Image 1


This Venn diagram shows you how AI sits at the intersection of traditional computer science techniques, traditional research and machine learning.

Here are just some of the benefits that AI can deliver when it's successfully deployed:

  • Better insights into business, customers and markets
  • More precise estimates of costs
  • Better demand forecasts
  • A clearer picture of customers
  • Identifying which customers are most likely to leave for a competitor
  • The ability to optimize supply chains and other business processes
  • Predictive maintenance — the ability to identify potential problems before they occur with equipment, and take preventive action
  • Spotting fraud in transactions

For more on this, see How Artificial Intelligence is Used – and How It’s Reshaping Business.


Case Study: Improving Forecast Accuracy with AI

Let's look at an example of an implementation that Columbus recently handled, for a manufacturing client that wanted to move its legacy ERP system to Microsoft Dynamics 365. One aspect of this worth noting is that the client's existing setup included individual demand forecasts for more than 40,000 different factory items.

Fortunately, by using Azure Machine Learning and integrating with Dynamics 365, we were able to automate the selection of the best machine learning forecast model and then calculate and return those forecasts back to Dynamics 365 for additional demand planning.

By automating the model, we accomplished a couple of things. First, we allowed the data to guide us to the best model for each individual item, rather than having to hard code it the way they'd done in the old system. That automation is what made it possible to scale that forecasting across tens of thousands of individual factory items.

But additionally, allowing the data to guide the model creation and selection itself often led to significant improvements in forecast accuracy.

We were able to make a 9% improvement in the overall forecast error rate. That was a typical result for many of the individual factory items.

Getting Off the Ground: From Planning to Deployment

Any successful implementation of AI needs to begin by defining the goals and key business needs that will be addressed. And that leads to assessing what tools and data are required.

We generally start with an AI workshop. To home in on what kind of AI is needed, we start by looking at goals. Are we looking to grow the business or increase profitability? Is there a digital transformation under way? Based on questions like these, we can decide whether what we need is better information, or maybe better execution of business processes. And that in turn can bring us to the right set of AI tools for solving those needs.

After the AI workshop, we follow that up with a feasibility study to assess the existing infrastructure and the available data. This is essential to make sure that we have the data, resources, time and infrastructure to achieve our goals. Measure twice, cut once.

It can't be emphasized enough that a successful AI implementation depends not just on having data, but having the right data. One of the most common pitfalls that can sink an AI project is data that's incomplete, inconsistent, inaccessible, in the wrong format or just plain incorrect.

In some cases, it might be necessary to clean up data with pre-processing — reformatting, filling in missing values, correcting errors, etc. This is important because bad data leads to bad analysis, incorrect decisions and poor outcomes. It may be necessary to build some time for data wrangling into the process, to make sure everything's ready to go.

After that, we can move to the stage where the magic happens: where we're actually developing and training the models. This is an iterative process, as we assess results and make improvements, until we reach the point where the model is performing well enough that it's ready for deployment.

People Are the Most Important Variable

From there, it's important to have a solid plan not just for deploying the solution, but for integrating it into the everyday business processes of the company.

Unfortunately, this is where many AI projects end up failing to realize their value. Because the most challenging part of any AI implementation isn't the technology itself: It's getting the human piece of the puzzle in place.

Businesses sometimes overlook how difficult it can be for experienced employees to adapt to new ways of working — while other team members may be skeptical of new technology and the value it can deliver, or just confused about how to integrate new tools and processes into their daily tasks.

The bottom line is, if team members don't receive the proper training and don't see the benefits of changing their processes, they may simply stick to the way they've always done things, and your company won't see the benefits of its investment in AI.

That means that in addition to investing in AI itself, businesses also need to invest in ensuring user adoption. For a look at some best practices in this area, see my article: A Barrier to AI Adoption: Getting Users Onboard to Maximize ROI.

And finally, there needs to be a plan in place for ongoing support. AI implementation isn't a one-and-done execution that you set in motion and forget about. Data changes over time, as do customers, markets, environmental conditions and other values that you've based your model around.

You'll need to pay attention to how the model is performing and retune periodically. Having a plan in place for what that will look like over six months, a year or three years will help make sure you're building something that will keep delivering rewards into the future.

From Out-of-the-Box to Custom Solutions

What we've discussed above is a general framework that can be adapted to the needs of specific businesses. Some projects may have very limited goals or specific constraints, so we can always develop custom AI solutions. At the same time, there are many existing tools that that can be activated and deployed right off the shelf.

With that in mind, there are generally three levels of AI or machine learning complexity that we use to categorize these projects:

  • built-in AI solutions
  • managed AI solutions
  • custom-built AI solutions

We may execute around AI tools that are already natively part of a platform, such as the AI or predictive analytics capabilities in a tool like Microsoft’s Power BI. There are plug-and-play components like Azure cognitive services, or natural language processing and computer vision that are part of Dynamics 365.

For other clients who need more tailored solutions, we may start from existing tools and capabilities and then develop more customized versions around that. In some cases, we may develop new tools that bring highly tailored capabilities that go beyond what's contained in existing partner platforms or off-the-shelf systems.

Watch the Webinar for a Closer Look

Interested in learning more? Watch my recent webinar, where I explore this topic in greater detail: Webinar: Getting Started with AI



Discuss this post

Recommended posts

Achieving a deeper understanding of the information that's already available to you can trigger major breakthroughs for your business, helping you exceed your goals and propelling you toward opportunities that you might not have even considered. The key to those breakthroughs is figuring out how to unlock the hidden insights in your data. That can seem like a daunting task, given the truly dizzying amounts of data available to businesses in the Industry 4.0 era — especially if they're getting real-time data from thousands of IoT devices. Connecting the dots isn't so hard when you've got a small and manageable set of dots to connect. But as the number of data points increases, the possible connections between them grow exponentially, and it takes a lot of computing power to precisely map all those connections and surface the important patterns and trends. That's part of why the neural networks that power AI and machine learning are so transformative. They make it possible to cut through the noise and detect patterns that would otherwise get missed. How AI Provides Superior Insights You might also think of AI as functioning a bit like a pair of 3D glasses: It helps you see things that would be unclear without it. By using Microsoft's Power BI dashboards, for example, you can draw on the power of AI to monitor your data, surface the important metrics, and then tell the story through powerful and easy-to-understand visualizations. These robust data dashboards can help you do everything from detecting security breaches to figuring out which products are most successfully driving your revenue. Boosting Sales with Better Product Pairings Some product pairings are obvious: syrup with pancakes, or paintbrushes with cans of paint. But others are more subtle and may not be apparent without the powerful combination of a strong foundational set of data and AI-powered analytics, which can help identify those less obvious complementary sales products. For instance, using AI can highlight that when you position product A alongside product B, you can experience a substantial boost of 5% in sales—a significant advantage for your business. How Machine Learning Helps Stop the Churning Spotting and addressing customer churn is another great example of what machine learning can do. It costs more to acquire new customers than to hold on to the ones you have, so the ability to use analytics to detect customers who are drifting way, or at risk of being captured by your competitors, is potentially game-changing. Using predictive analytics, you can reach out to those customers whose interest is waning with well-timed discounts and promotions, or even develop subscription-based models or loyalty programs to help keep them in the fold. Defeating Downtime with Predictive Insights We frequently see manufacturing facilities that are depending on one or two mission-critical machines that do 80% of their business — and those machines are often running 24/7. If one of those machines goes down, the result is painful downtime that can lead to production delays, revenue losses, and unhappy customers. Both your bottom line and your top line wind up taking a hit. But thanks to machine learning and IoT sensors, you can draw on real-time data to identify equipment that may be getting too hot, going out of tolerance, or at risk of developing other kinds of diagnosable hiccups and coughs. And then you can step in to make sure those sine qua non machines continue to function on schedule, protecting your balance sheet and keeping your customers happy. Data That's More Than a Fair-Weather Friend MRP is another place where predictive analytics can help put you ahead of the game. Maybe you're using a kind of "brute force" accounting to decide how to allocate costs among ten different product lines — 20% here, 5 percent there, etc. But with predictive analytics, you can get more sophisticated. You can identify trends like seasonality and other less-apparent cycles, so you can change allocations dynamically to match trends you wouldn't have otherwise known about. Machine learning allows you to factor in a lot of external data that goes beyond what's in your own ERP. Like weather data, for example. Suppose you have a product line that's very sensitive to heat or humidity. You might be able to draw on weather data to augment your existing data, so you can change the chemical properties of the product to make it more humidity resistant. Columbus recently worked with a retail organization that sells high-end outdoor products as a major component of their business. They found that some sizes and products sold better in certain stores than others, and they wanted a better understanding of the optimal product mix in each store. That's the kind of complicated data picture that machine learning can help you bring into focus. One of the other key questions they needed to answer was weather-related: when to bring out the heavier gear, like winter gloves or insulated vests and jackets. So, the ability to analyze weather trends and patterns offered an opportunity to achieve better timing and improve their margins. There are plenty of other ways that the capabilities of AI can help you make it rain — or provide an umbrella to get you through downturns and disruptions. To learn more, schedule a call with Columbus so we can help your organization tap into the full capabilities of AI.
As we begin 2024, it's no longer a question of whether to adopt AI-driven tools and strategies. These days, forward-thinking business leaders are actively considering how to adopt and implement AI successfully, in order to minimize risks and maximize the strategic rewards.
Some of the most exciting capabilities of current ERP systems — the ones with the potential to put ambitious new business goals within your reach — are the ones that leverage the impressive recent advances in artificial intelligence. Experienced leaders know that to reap the rewards of new technology, you need to be clear-eyed and fully aware of the potential rewards and opportunities, as well as the pitfalls that need to be avoided. What do you need to know to take full advantage of the fusion of ERP and AI, without running into unexpected obstacles and dangers? Ultimately, there's no substitute for careful planning, forethought, and guidance from ERP experts. How Do ERP and AI Work Together to Benefit Business? One of the most important ways that AI boosts the capabilities of ERP systems is by helping companies recognize patterns and make predictions. With AI-powered ERP software, you can forecast everything from sales and cashflow to supply chain disruptions and the need for preventive maintenance of equipment. This pattern detection plays out in all kinds of valuable ways. With visibility into open purchase orders, for instance, AI can spot when a supplier with multiple orders is late with one of them, assess the implications for the other orders, and call that to your attention so you can communicate with the supplier as needed. You may be able to resolve the situation easily with a two-minute email, where previously it might not have come to your attention until it was too late. It's especially helpful to have AI monitoring things like potential shipping disruptions. Whether it's a ship blocking the Suez Canal or ports closing due to the outbreak of war, it can make a huge difference to have a system that keeps track of shipping details and alerts you to possible delays an extra day—or even an extra week—in advance. How AI Boosts Workplace Productivity Another of AI’s real superpowers is its ability to help team members spend less time on tedious drudge work and more time on higher-level tasks. AI is tremendously effective at bypassing writer's block, for example. It can expedite critical tasks like summarizing business meetings, generating sales or purchase agreements, and writing business correspondence along with other business documents. Consider the new Microsoft Copilot, which is integrated with Dynamics 365. It combines the power of language models with your business data—including all your Microsoft 365 apps, documents, and conversations. It can help you: • Write documents in Word by generating text and suggesting edits • Analyze and visualize data quickly in Excel • Bring ideas to life impactfully in PowerPoint • Create efficient communications in Outlook … and much more. How AI Helps Elevate Customer Service AI can take customer service to a higher level by helping customers get the information and help they need in a timelier manner. It can also ensure that customers get their deliveries faster by solving or preventing supply chain and logistics issues. Automatic certain customer service tasks with AI means less waiting and happier customers. What Key Trends Are Driving the Adoption of AI in ERP systems? One of the most potent factors fueling interest in AI right now is the success of tools like OpenAI's ChatGPT, DALL-E, Midjourney, and Adobe Firefly. These tools have democratized AI by making it widely accessible in an easy-to-use format. In just the last couple years, the average person’s eyes have really been opened to AI’s possibilities. But contrary to what most people think, AI didn't just burst on the scene overnight— it’s been under the hood of many business software programs for years, slowly developing its capabilities and enabling more sophisticated tools. Microsoft in particular has been at the forefront of this. Remember Clippy in MS Office? That was an early example of an AI-powered assistant. Cortana was another step along the path. ERPs have been drawing on the power of AI for years now to analyze patterns and trends and make better forecasts and predictions. Microsoft's Dynamics 365 has been a leader in this effort as well. These days, Microsoft's Power Apps are a great example of how Microsoft helps companies harness the power of AI to boost and extend their abilities. With Power Automate, for example, you can easily make use of robotic process automation (RPA) and digital process automation (DPA) to automate recurring tasks and create automated workflows using low-code drag and drop tools. With Power Automate, you can even explain a problem in English and have it create a solution for you. So instead of needing to know how to write a SQL query, you can just say something like, “Hey, I want a list of all customers that spent at least $100,000 worth of product from us in the past, including something from this particular product line, but haven't bought from us in the last six months" — and Power Automate will know how to build that query and then either display it in a Power BI view, use it to feed a mass mailing, or do other useful things with it. Which makes it possible to get what you need out of systems without having to understand all the bits and bytes involved. Likewise, the power of predictive analytics, and the machine learning and forecasting tools that are built into ERPs like D365, mean you don't need to be a data scientist to analyze and visualize data in new and powerful ways — helping you see the road ahead so that you can run your business in a proactive (rather than reactive) way. Setting Guardrails: Navigating Potential Risks With power comes responsibility, of course, and a need to be clear-eyed about the possible downsides and pitfalls of leveraging AI within an ERP system. Navigating these issues successfully comes down to making sure you have the right guardrails in place and that they aren't circumvented. One of the most critical issues is to make sure that your data is tagged correctly by setting up good IT governance. What data should only be used within the walls of the company? What should be limited to people with specific levels of access? For example, consider a publicly traded company. If their financial results are inadvertently released before their 10-K is published, the SEC could punish them for it. AI could accidentally leak that kind of data if the right guardrails aren't in place to prevent it. Making sure data is correctly tagged can be a complicated process, and a lot of companies, especially smaller ones, may not have the necessary skills in house. That's an area where a partner like Columbus can step in and help. Copyright and intellectual property is another area where strong guardrails need to be set up. The Writer's Guild strike recently drew attention to this issue. For businesses, the question is: How do you make sure that your data and intellectual property aren't appropriated and leveraged without your permission? This is another reason why data needs to be carefully tagged and protected before it's released. There's a major change management component to this issue as well. It's vital to make sure that employees are aware of the risks and understand the proper procedures to safeguard data, as well as which tools are appropriate to use and which aren't. Policies also need to be created to make sure that employees don't circumvent the guardrails, intentionally or unintentionally. Making sure team members are trained in a consistent and ongoing way is crucial. How Can Enterprise Businesses Prepare for a Future Shaped by AI and ERP? With all of the above in mind, you can’t let the risks of new technology dissuade you from moving forward. Your competitors will be taking advantage of these tools, and you can't afford to be left behind. The key is to implement these tools in a disciplined and measured way, staying cognizant of the rewards and possibilities, as well as the potential pitfalls. This is another area where having an experienced partner like Columbus by your side can help you steer the ship successfully. Want to learn more about how Columbus can help your organization harness the full capabilities of AI? Get in touch with us today.
A recent report from The Economist Intelligence Unit states 94 percent of businesses consider artificial intelligence (AI) "important to solving their strategic challenges." It's a finding that's in line with experts’ forecast of AI playing a key role in enhancing growth, productivity, innovation and job creation in the coming years.
right-arrow share search phone phone-filled menu filter envelope envelope-filled close checkmark caret-down arrow-up arrow-right arrow-left arrow-down