<img src="https://secure.leadforensics.com/133892.png" alt="" style="display:none;">

Med et klassisk BI-system kan man i princippet blot opgradere, når det flugter optimalt med behov, strategi og plads i kalenderen. Men tit dukker der vigtigere projekter op, og en dag når man så langt bagud i opgraderingscyklussen, at det koster blod, sved og tårer at nå op på nyeste version. Det slipper man for med en cloudbaseret platform, der jo opgraderes automatisk. Så er alt nu rosenrødt, problemfrit og happy ever after? Ikke helt...

Er alt rosenrødt med automatiske opgraderinger?

For uanset, om du vælger en Business Intelligence-løsning fra Columbus eller en af vore konkurrenter, er den koblet tæt op på en eller flere forretningsløsninger eller systemer. Så når f.eks. Microsoft eller andre leverandører ændrer deres platform, pilles der undertiden også ved den underliggende datamodel, som din BI-løsning trækker informationer fra. Derfor risikerer du i princippet, at din BI-løsning en dag ikke længere fungerer optimalt.

Spørger man leverandøren – f.eks. Microsoft – vil svaret gerne lyde, at man kan tage det helt roligt; den sag er der styr på og alle ændringer varsles i god tid. No problem!

Men som rådgiver for vores kunder, der skal have løsningerne til at virke upåklageligt og under alle forhold, må jeg venligt konstatere, at det er en sandhed, der fungerer bedre på en PowerPoint-præsentation end i virkeligheden.

Ændret datamodel kan skade troværdigheden

For når der foretages ændringer i datamodellen, skal alle parter være mere end almindeligt vågne. Der er nemlig kun et forholdsvis lille vindue på to måneder til at validere og sikre, om BI-løsningen stadig fungerer optimalt og efter hensigten i den forretningsmæssige sammenhæng.

Sker det ikke, risikerer du, at din BI-løsning ikke længere leverer troværdigt output og at organisationen – til syvende og sidst – mister tilliden til den. Det er en kritisk udfordring i virksomheder, hvor opdateret forretningsindsigt og datadreven beslutningsstøtte er lige så afgørende, som om at have styr på bogholderi og fakturering.

Konkrete krav er din bedste garanti

Finder du for sent ud af, at din løsning ikke er forberedt til den aktuelle datamodel, kan det både koste forretningskritisk indsigt, kritisk nedetid og en betydelig konsulentregning at få ordnet problemet.

Derfor bør du altid kræve af din BI-partner, at de:

  • Konstant holder sig ajour med ændringer i datamodellen på dine primærsystemer
  • Har en struktureret proces for at håndtere disse skift i god tid
  • Tilbyder en serviceaftale, der tager en del af omkostningen og sikrer, at du og din BI-løsning automatisk kommer videre ved skift i den underliggende datamodel

For selv om alt virker fint i dag, så er det klogt at tænke et par skridt frem. Især nu, hvor nye versioner ikke er sådan noget, der kommer hvert halve eller hele år og er mere eller mindre valgfrie – men leveres på eksempelvis månedlig basis og hvor valgfrihed er en by i Rusland.

Lær mere om hvordan du får data ud af din D365FO-løsning

Emne

Kommenter indlæg

Recommended posts

Hvis vi virkelig ønsker at gøre noget ved vores massive madspild, er det forholdsvis enkelt. Teknologien ér allerede tilgængelig. Til gengæld venter en stor udfordring i at opdrage såvel fødevareproducenterne som detailhandelen og forbrugerne til at tænke mere bæredygtigt.
Med vores teknologiske modenhed og mange data har vi i Danmark et godt udgangspunkt for at få succes med AI. Men både i virksomhedernes kultur, på det politiske plan og i det sprog, vi omtaler AI med, er der udfordringer, som vi skal adressere. Det mener IT-konsulentvirksomheden Columbus, som er med i Dansk Erhvervs AI-Koalition, der kortlægger danske virksomheders styrkepositioner og barrierer, når det gælder kunstig intelligens.
If you organize your data and use AI strategically, you can make better decisions faster. You can for example improve your market understanding and forecasting, optimize your maintenance or reduce food waste. Choose what is most important for you!
Demand forecasters do the impossible — predict what products and services customers want in the future. Their forecasts inform decision-making about production and inventory levels, pricing, budgeting, hiring and more. "While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts." The goal is to produce exactly the amount of product to meet demand. No more. No less. Demand forecasting is used to anticipate the demand with enough time to manufacture the right stock to get as close to this reality as possible. The cost is high if you don’t get it right. Your customers will go to your competitors if you don’t have what they need. Unfortunately, capacity, demand and cost aren’t always known parameters. Variations in demand, supplies, transportation, lead times and more create uncertainties. Ultimately demand uncertainties greatly influence supply chain performance with widespread effects on production scheduling, inventory planning and transportation. On the heels of the global pandemic, supply chain disruptions and a pending economic downturn, many demand forecasters wish for a crystal ball. While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts.
If you have identified possible AI use cases for your business, the next step will be to test if they are possible to implement and if they will create great value. While there is a lot of momentum and excitement about using AI to propel your business, the reality is only 54% of AI projects are deployed. How do you ensure you’re one of the businesses that does unlock the new opportunities AI promises? Your success with AI begins by discovering AI use cases that work for your business. In the first blog of our Columbus AI blog series, we shared five areas where organizations should focus their efforts to generate ideas for AI implementations based on our experience. After generating some ideas for AI use cases that could potentially benefit your company from the first step of the Columbus AI Innovation Lab, the next step is to test which AI use cases could be operationalized by evaluating them. Columbus AI Innovation Lab
right-arrow share search phone phone-filled menu filter envelope envelope-filled close checkmark caret-down arrow-up arrow-right arrow-left arrow-down