<img src="https://secure.leadforensics.com/133892.png" alt="" style="display:none;">

Du interagerer med AI (artificial intelligence) på daglig basis uanset om du er klar over det eller ej. Kunstig intelligens bliver i stigende grad anvendt af virksomheder til at automatisere arbejdsprocesser, eliminere ressourcespild og på anden måde optimere drift og produktion.

Men ligesom vejret kan trends blandt forbrugerne eller tekniske fejl nogle gange skifte og ændre sig uden varsel.

Forestil dig, at du vidste, hvor mange produkter, du ville sælge i næste uge eller måned, på hvilket marked og i hvilken mængder – at du kunne forudse, hvilke varer dine kunder ville synes om og dermed købe. Eller forestil dig, at du kunne forudse, hvornår jeres produktionsmaskiner ville svigte, og at I dermed kunne sende en servicetekniker på sagen med det samme og undgå nedbrud og samtidig sikre en øget produktionsudnyttelse af jeres kapacitet. Hvad ville den information være værd for din virksomhed?

Du - og mange andre virksomheder som din - har uden tvivl brugt mange timer og ressourcer på den slags problemer i et forsøg på at være et skridt foran. Men ligesom vejret, kan trends blandt forbrugerne eller tekniske fejl nogle gange skifte og ændre sig uden varsel. Moderne teknologi kan hjælpe os med at handle på de informationer, som ligger gemt i data.

Vi kender AI fra vores eget liv

Vores daglige interaktion med systemer, som har en eller anden grad af AI i sig, er også i kraftig vækst. De billeder, vi uploader til Facebook, Instagram og andre sociale medier, bliver automatisk accepteret eller bortfiltreret af kunstig intelligens, som er trænet til at genkende upassende indhold. Når vi indberetter vores selvangivelse, er det AI-algoritmer, som undersøger, om det hele "ser fornuftigt ud", eller om der kunne være mistanke om svindel. Eller når Tesla's CEO Elon Musk udfordrer status quo med f.eks. selvkørende biler og raketter, der kan lande oprejst og dermed genanvendes.

Alle kan i princippet komme i gang på det niveau, der passer til deres forretning.

Faktum er, at AI blot er næste skridt i udviklingen af computer software drevet af interessen for at udnytte de enorme mængder data, vi indsamler.

Der findes mange definitioner på AI, men største fællesnævner for disse er automatisering af opgaver, som førhen kun var mulige i form af menneskelig intelligens. Den gode nyhed er, at AI ikke længere er forbeholdt de store teknologivirksomheder. Alle kan i princippet komme i gang på det niveau, der passer til deres forretning. Med AI kan vi løfte det analytiske niveau til nye højder, hvor vi ikke længere skal nøjes med at se på de historiske tal, men rent faktisk kan lave præcise prædiktioner af fremtiden.


Læs også "6 Steps to Be Successful With Advanced Analytics" e-bogen her.

Rigtige data

Fokuser på den AI, der tjener din virksomhed bedst

Det er let at lade sig rive med af hypen, men start med det simple spørgsmål: Hvad vil du opnå med AI? Du bør starte dit projekt med en klar definition af problemet.

Her vil du måske opleve, at du kan opnå det ønskede resultat med det design, du allerede har. Eller at AI ikke er en passende løsning, hvilket der kan være mange årsager til. Fokusér på de lavthængende frugter, centrale forretningsmål og åbenlyse problemer.

Spørg dig selv: Hvad vil du gerne blive bedre til? Hvilke processer er mest tidskrævende eller mest tilbøjelige til at fejle? Er der noget der kan automatiseres?

Der findes en lang række anvendelsesmuligheder for AI og ML. Fælles for dem alle er, at AI for alvor kan gøre en forskel, når den er velintegreret med de eksisterende forretningsprocesser i organisationen.

Solve-data-problems

Benyt de rigtige data

Hvis I allerede har en moderne dataplatform på virksomhedsniveau, er det på tide at sætte AI på jeres strategiske dagsorden.

AI starter med data. Mængden og kvaliteten af data er derfor altafgørende for, hvorvidt AI overhovedet er en passende løsning. På hvilke områder har I den nødvendige data, og hvordan er kvaliteten af denne? Hvis I allerede har en moderne dataplatform på virksomhedsniveau, er det på tide at sætte AI på jeres strategiske dagsorden. Moderne AI har mange applikationer på tværs af nærmest alle brancher og forretningsområder, fra forsyningsvirksomheder, banker, detailhandel til produktion og e-commerce.

Vil du vide mere, anbefaler jeg, at du læser vores e-bog '6 Steps to Be Successful With Advanced Analytics'

Du finder E-bogen her

 

Emne

Kommenter indlæg

Recommended posts

If you organize your data and use AI strategically, you can make better decisions faster. You can for example improve your market understanding and forecasting, optimize your maintenance or reduce food waste. Choose what is most important for you!
Demand forecasters do the impossible — predict what products and services customers want in the future. Their forecasts inform decision-making about production and inventory levels, pricing, budgeting, hiring and more. "While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts." The goal is to produce exactly the amount of product to meet demand. No more. No less. Demand forecasting is used to anticipate the demand with enough time to manufacture the right stock to get as close to this reality as possible. The cost is high if you don’t get it right. Your customers will go to your competitors if you don’t have what they need. Unfortunately, capacity, demand and cost aren’t always known parameters. Variations in demand, supplies, transportation, lead times and more create uncertainties. Ultimately demand uncertainties greatly influence supply chain performance with widespread effects on production scheduling, inventory planning and transportation. On the heels of the global pandemic, supply chain disruptions and a pending economic downturn, many demand forecasters wish for a crystal ball. While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts.
If you have identified possible AI use cases for your business, the next step will be to test if they are possible to implement and if they will create great value. While there is a lot of momentum and excitement about using AI to propel your business, the reality is only 54% of AI projects are deployed. How do you ensure you’re one of the businesses that does unlock the new opportunities AI promises? Your success with AI begins by discovering AI use cases that work for your business. In the first blog of our Columbus AI blog series, we shared five areas where organizations should focus their efforts to generate ideas for AI implementations based on our experience. After generating some ideas for AI use cases that could potentially benefit your company from the first step of the Columbus AI Innovation Lab, the next step is to test which AI use cases could be operationalized by evaluating them. Columbus AI Innovation Lab
Only half of the companies starting an AI pilot project are actually executing it. The key is to choose an idea that will benefit your business. Read more about how! In 2022, 27% of chief information officers confirmed they deployed artificial intelligence (AI), according to a Gartner AI survey. Even though businesses across all industries are turning to AI and machine learning, prepare your organization before jumping on the AI bandwagon by considering a few factors. Ask yourself: Is AI necessary for achieving the project requirements or is there another way? Does your team have the skills to support AI and machine learning? How will AI impact your current operations if you adopt it? How will you integrate AI with existing systems? What are the data, security and infrastructure requirements of AI and machine learning? The Gartner AI survey found only 54% of projects made it from the pilot phase to production. After significant investment in AI, why aren’t companies deploying it? We found the problem begins when companies define a use case. Too often, companies are not identifying AI use cases that benefit their businesses and end-users will adopt. The question is then, how should companies unlock the value and new opportunities AI promises? It starts with a systematic approach for each stage of the AI life cycle. We developed the Columbus AI Innovation Lab, a comprehensive method to address and account for all challenges when adding AI to your business operations and bring stakeholders into the process at the right time to help you operationalize AI.
It doesn’t matter how good your artificial intelligence technology is. If you have bad data, you’ll get bad results. While AI is one of the most innovative and impactful innovations for businesses today, bad data can prevent AI projects from getting off the ground. Having high-quality data and following data preparation best practices are crucial for a successful AI project. In the Transform phase of the Columbus AI Innovation Lab, the one we detail here, data is collected and prepared for use by AI and machine learning (ML) algorithms. Major phases in Machine Learning Machine learning, frequently used synonymously with “artificial intelligence,” is about using predictive methods to simplify tasks. There are several essential steps to building ML models, and these steps can change based on the issue you are trying to solve and the kind of ML model you are building. However, in general, the steps involved in creating and implementing an ML model are as follows: Define: Different approaches for finding AI use cases Discover: Scope and prioritize ideas before developing an AI solution and implementation strategy Transform: Transforming the business case including data acquisition and preparation with AI/ML (current blog) Model and evaluate: Analyze and enhance the business use cases using AI/ML algorithms Deploy and support: Deployment of AI/ML models and support/monitoring to guarantee quality and effectiveness
right-arrow share search phone phone-filled menu filter envelope envelope-filled close checkmark caret-down arrow-up arrow-right arrow-left arrow-down