<img src="https://secure.leadforensics.com/133892.png" alt="" style="display:none;">

Vil du gøre en markant forskel? Opnå mere viden og indsigt? Så brug din data! Gør dem levende, vær fokuseret, tag de rigtige faktabaserede beslutninger, vær nysgerrig og udfordrende, vær open minded, og find ny viden og overraskende historier i din eksisterende data.

Tænk stort, men start småt – jeg ved hvordan gennem min mangeårige erfaring og vil gerne udfordre dig, så du kan gøre en markant forskel i din virksomhed.

Giv plads til leg med data

BI er i dag nemt at komme i gang med. Mange dygtige medarbejdere når i mål på egen hånd efter kort tid i selskab med Power BI, som er tæt integreret med virksomhedens forretningssystemer, der stiller opdateret data til rådighed. Dette er hovedtanken bag ”self-service" BI. Gør det nemt og tilgængeligt.

Er der en mindre risiko ved dette? Ja, men imødekom for guds skyld dine medarbejderes lyst til at lege med data – det kan sagtens styres og vil give jer ny brugbar viden. Værdien af ny indsigt er størst!

Gevinstrealisering af din BI investering?

Opnåeligt og målbart? Ja, men kun hvis du ved, hvad I måler på, hvorfor I gør det og hvad I ønsker at opnå med jeres vundne indsigt. I skal kende jeres egen data for at kunne bruge dem effektivt. Ellers kunne I – groft sagt – lige så godt trække tilfældige numre op fra en pose banko-brikker og håbe på det bedste.

Kobling til strategi? Klart!

Det er vigtigt at sikre, at jeres dashboards og KPI’er er tæt koblet til jeres mission, vision og strategi – jeg mener, det tankesæt, der føder strategisk, taktisk og operationel handling. Det skaber grundlag for, at I får indsigt i både nye forretningsmuligheder og den øjeblikkelige situation, samt oplagt mulighed for at I kan tilpasse, reagere og afprøve, om tiltag fungerer effektivt uden at spilde for meget tid.

Du sikrer værdien ved at få dine brugere med på rejsen

Det sikrer jer også ”den røde tråd” fra jeres strategi til operationel dagligdag. Jeg har oplevet rigtigt glade kunder gennem årene. De har alle oplevet den merværdi af deres BI løsning qua deres medarbejdere har fået forståelse for og indsigt i, at de positivt bidrager og understøtter strategien og væksten via deres daglige gøren. Den forståelse havde de ikke tidligere. De kunne ikke følge den dagligt, kun via deres måneds- og/eller kvartals informationsmøder med ledelsen.

Måler du på alt, måler du på intet.

Hold fokus! Mål kun på de få relevante KPI'er, der virkelig er missionskritiske og brugbare i forhold til at justere adfærd og processer, der understøtter jeres vækst og strategi.

Den største glæde og succes for mig er, når jeg sammen med mine kunder sikrer en effektiv implementering, høj brugertilfredshed og ikke mindst en målbar gevinstrealisering af deres investering.

Sidste men ikke mindst - Jeg lover dig, at brugen af data virker!

 

 

Vil du hjælpe virksomheder med at måle på de rigtige KPI’er?

Læs mere her

Emne

Kommenter indlæg

Recommended posts

If you organize your data and use AI strategically, you can make better decisions faster. You can for example improve your market understanding and forecasting, optimize your maintenance or reduce food waste. Choose what is most important for you!
Demand forecasters do the impossible — predict what products and services customers want in the future. Their forecasts inform decision-making about production and inventory levels, pricing, budgeting, hiring and more. "While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts." The goal is to produce exactly the amount of product to meet demand. No more. No less. Demand forecasting is used to anticipate the demand with enough time to manufacture the right stock to get as close to this reality as possible. The cost is high if you don’t get it right. Your customers will go to your competitors if you don’t have what they need. Unfortunately, capacity, demand and cost aren’t always known parameters. Variations in demand, supplies, transportation, lead times and more create uncertainties. Ultimately demand uncertainties greatly influence supply chain performance with widespread effects on production scheduling, inventory planning and transportation. On the heels of the global pandemic, supply chain disruptions and a pending economic downturn, many demand forecasters wish for a crystal ball. While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts.
If you have identified possible AI use cases for your business, the next step will be to test if they are possible to implement and if they will create great value. While there is a lot of momentum and excitement about using AI to propel your business, the reality is only 54% of AI projects are deployed. How do you ensure you’re one of the businesses that does unlock the new opportunities AI promises? Your success with AI begins by discovering AI use cases that work for your business. In the first blog of our Columbus AI blog series, we shared five areas where organizations should focus their efforts to generate ideas for AI implementations based on our experience. After generating some ideas for AI use cases that could potentially benefit your company from the first step of the Columbus AI Innovation Lab, the next step is to test which AI use cases could be operationalized by evaluating them. Columbus AI Innovation Lab
Only half of the companies starting an AI pilot project are actually executing it. The key is to choose an idea that will benefit your business. Read more about how! In 2022, 27% of chief information officers confirmed they deployed artificial intelligence (AI), according to a Gartner AI survey. Even though businesses across all industries are turning to AI and machine learning, prepare your organization before jumping on the AI bandwagon by considering a few factors. Ask yourself: Is AI necessary for achieving the project requirements or is there another way? Does your team have the skills to support AI and machine learning? How will AI impact your current operations if you adopt it? How will you integrate AI with existing systems? What are the data, security and infrastructure requirements of AI and machine learning? The Gartner AI survey found only 54% of projects made it from the pilot phase to production. After significant investment in AI, why aren’t companies deploying it? We found the problem begins when companies define a use case. Too often, companies are not identifying AI use cases that benefit their businesses and end-users will adopt. The question is then, how should companies unlock the value and new opportunities AI promises? It starts with a systematic approach for each stage of the AI life cycle. We developed the Columbus AI Innovation Lab, a comprehensive method to address and account for all challenges when adding AI to your business operations and bring stakeholders into the process at the right time to help you operationalize AI.
It doesn’t matter how good your artificial intelligence technology is. If you have bad data, you’ll get bad results. While AI is one of the most innovative and impactful innovations for businesses today, bad data can prevent AI projects from getting off the ground. Having high-quality data and following data preparation best practices are crucial for a successful AI project. In the Transform phase of the Columbus AI Innovation Lab, the one we detail here, data is collected and prepared for use by AI and machine learning (ML) algorithms. Major phases in Machine Learning Machine learning, frequently used synonymously with “artificial intelligence,” is about using predictive methods to simplify tasks. There are several essential steps to building ML models, and these steps can change based on the issue you are trying to solve and the kind of ML model you are building. However, in general, the steps involved in creating and implementing an ML model are as follows: Define: Different approaches for finding AI use cases Discover: Scope and prioritize ideas before developing an AI solution and implementation strategy Transform: Transforming the business case including data acquisition and preparation with AI/ML (current blog) Model and evaluate: Analyze and enhance the business use cases using AI/ML algorithms Deploy and support: Deployment of AI/ML models and support/monitoring to guarantee quality and effectiveness
right-arrow share search phone phone-filled menu filter envelope envelope-filled close checkmark caret-down arrow-up arrow-right arrow-left arrow-down