<img src="https://secure.leadforensics.com/133892.png" alt="" style="display:none;">

It is pretty much a given that great analytics can drive better decision making, inform product development and help identify where cost savings can be made. How to get there is the challenge!

There are two key types of data to consider:

  • Internal – management information generated by your ERP, CRM and other applications across the business
  • External – “big data” additional sources that augment internal data to provide true Business Intelligence

Sadly, many projects will falsely identify fixing all internal data as the first task and fail (think Einstein’s definition of insanity, doing the same thing and expecting a different result; you have definitely tried to fix your data before!). Here are some thoughts on what you could do differently to create a data strategy for your business:

What do you need to know?

  • KPIs: What do you need to know to help drive your business?
  • Can you get that data?

Don’t groan, thinking about your Key Performance Indicators is a useful exercise! Let’s use lead generation as an example. With the race to drive web presence, is your metric how many people visit the website (quantity) or is it concerned with bounce rate (quality)? While this is simplistic, it’s a starting point!

Okay, so what if I am really interested in website visitors that came from a specific route (let’s say LinkedIn) and visited three pages before going on to buy more than £1,000 of goods - by measuring this, I can understand if my LinkedIn presence is working for me.

The data itself is provided by website analytic engines and your sales order processing application. So you have the data, brilliant! Now you need to unlock that data and present it in a way that is useful to you.

Having a data strategy helps you focus on what data is important. Now you start to understand what data needs to be reliable and stop stressing over the impossible task of keeping all of your data squeaky clean all of the time.

Reliable data

We made an assumption above, we assumed that we’re working with data we trust! Cleaning data is like clearing a loft, something you try not to think about and leave until forced by a big event (new system implementation or house move). Let’s extend the house move analogy and ask yourself this question: Last time you moved house, did you find an unopened box from when you moved in?

Part of your data strategy needs to include housekeeping. If historical data is important then shape it up. If less so, then don’t sweat it. Either way, put energy into managing data going forward. Your existing applications should be helping with this. Minimise free text fields, use mandatory fields, workflows/approvals and make use of de-dupe tools that all help ensure your data smells sweet but only do it on the data you need to analyse (and where possible automate the capture), otherwise you will make your processes laborious and as water runs downhill, your users will look for ways to side-step.

Fast measuring and managing

Data analytics (and big data) are nothing new. Back in the 1950s businesses were using basic analytics, typically manually reviewed spreadsheets, to uncover insights and trends. It’s common sense that if you capture all the data that streams in your businesses, you can apply analytics and get significant value from it. So why isn’t it common practice?

The new benefits that big data analytics bring are speed, efficiency and accessibility. Whereas a few years ago a business would have spent considerable time/money to gather information, run analytics and identify those trends, today it is easier than ever to identify insights for immediate decisions.

The ability to work faster is what generates the ROI; there’s no return on data that tells you what you should have done, you want to know what to do next.

And whilst we’re on measuring, managing and ROI, think carefully about monitoring the cost. “Hot path” data is expensive to keep so consider what needs to be hot and what could be cold. Tools such as Microsoft Azure Data Services help you structure the storage and refresh options.

Don’t blame the tools!

Three years ago, a McKinsey Global Survey showed that business leaders expected their analytics activities to have a positive impact on company revenues, margins, and organisational efficiency. A revisit revealed mixed success: issues with strategy and tools were not the biggest culprits. As with any project, the key to success is in the tactics and people: leadership support, communication and right resource for the job.

The right resource is not always about the previous experience; the tools are easy enough to use with the right mindset and support to get to grips with them. You can (and dare I say, should!) “grow your own” resource and if you are engaging a specialist, remember the most successful projects are collaborations where the partner is developing your team (doing it “with you” not “to you”).

Once you have your homegrown data champions, your team will refine the data strategy. This, in turn, will lead to a further reduction in the manual tasks associated with data preparation and management, leaving more time to focus on higher value activities.

Identify a simple Proof of Concept

Dolphin versus whale, don’t eat the elephant etc. Before you try to do everything all at once, identify a manageable subset. Use the tools to spin it up, monitor cost and value and refine before scaling upwards and outwards.

Data storage is relatively cheap, working with it is more expensive; but with the volumes of data created it is a cost that can soon escalate. Managing the cost is where a good partner will add value. I do predict some “bill shock” stories for those who don’t provision their data storage effectively.

One of the really great things about how rapidly these solutions can be created is that you can run inexpensive proof of concepts to quickly check that your harnessed data is moving you in the right direction.

Discover how you can get started today by downloading our Predictive analytics facts sheet. 

New call-to-action


Discuss this post

Recommended posts

The hype around the rise of generative AI technologies makes huge promises about the potential of the technology. Yet it would be fair to say the majority of organisations are only experimenting with the technology or using it in isolated use cases.
If you organise your data and use AI strategically, you can make better decisions faster. You can for example improve your market understanding and forecasting, optimise your maintenance or reduce food waste. Choose what is most important for you!
Demand forecasters do the impossible — predict what products and services customers want in the future. Their forecasts inform decision-making about production and inventory levels, pricing, budgeting, hiring and more. "While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts." The goal is to produce exactly the amount of product to meet demand. No more. No less. Demand forecasting is used to anticipate the demand with enough time to manufacture the right stock to get as close to this reality as possible. The cost is high if you don’t get it right. Your customers will go to your competitors if you don’t have what they need. Unfortunately, capacity, demand and cost aren’t always known parameters. Variations in demand, supplies, transportation, lead times and more create uncertainties. Ultimately demand uncertainties greatly influence supply chain performance with widespread effects on production scheduling, inventory planning and transportation. On the heels of the global pandemic, supply chain disruptions and a pending economic downturn, many demand forecasters wish for a crystal ball. While crystal balls remain imaginary, machine learning (ML) methods can give global supply chain leaders the support they need in the real world to create more accurate forecasts.
If you have identified possible AI use cases for your business, the next step will be to test if they are possible to implement and if they will create great value. While there is a lot of momentum and excitement about using AI to propel your business, the reality is only 54% of AI projects are deployed. How do you ensure you’re one of the businesses that does unlock the new opportunities AI promises? Your success with AI begins by discovering AI use cases that work for your business. In the first blog of our Columbus AI blog series, we shared five areas where organisations should focus their efforts to generate ideas for AI implementations based on our experience. After generating some ideas for AI use cases that could potentially benefit your company from the first step of the Columbus AI Innovation Lab, the next step is to test which AI use cases could be operationalised by evaluating them. Columbus AI Innovation Lab
Only half of the companies starting an AI pilot project are actually executing it. The key is to choose an idea that will benefit your business. Read more about how! In 2022, 27% of chief information officers confirmed they deployed artificial intelligence (AI), according to a Gartner AI survey. Even though businesses across all industries are turning to AI and machine learning, prepare your organisation before jumping on the AI bandwagon by considering a few factors. Ask yourself: Is AI necessary for achieving the project requirements or is there another way? Does your team have the skills to support AI and machine learning? How will AI impact your current operations if you adopt it? How will you integrate AI with existing systems? What are the data, security and infrastructure requirements of AI and machine learning? The Gartner AI survey found only 54% of projects made it from the pilot phase to production. After significant investment in AI, why aren’t companies deploying it? We found the problem begins when companies define a use case. Too often, companies are not identifying AI use cases that benefit their businesses and end-users will adopt. The question is then, how should companies unlock the value and new opportunities AI promises? It starts with a systematic approach for each stage of the AI life cycle. We developed the Columbus AI Innovation Lab, a comprehensive method to address and account for all challenges when adding AI to your business operations and bring stakeholders into the process at the right time to help you operationalise AI.
right-arrow share search phone phone-filled menu filter envelope envelope-filled close checkmark caret-down arrow-up arrow-right arrow-left arrow-down